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Numerical algortthms for surface tensron and viscosity are presented m the context of a 
Lagrangtan treatment of mcompressible hydrodynamics with a dynamtcally restructurmg grid. 
New algorithms are gtven which update previous Lagrangian approaches in the code SPLASH. 
Test problems mvolvmg internal gravity and capillary waves, an oscillating droplet and a 
VISCOUS shear layer are described. An example IS given of a flow calculated in and around a 
VISCOUS droplet wtth surface tension in a shear flow. I 1988 Academtc Press Inc 

I. INTRODUCTION 

In principle, a Lagrangian formulation of the hydrodynamics equations is 
particularly attractive for numerical calculations. Each discretized fluid element is 
tracked as it evolves through the interaction with its changing environment and 
with external forces. The local interactions can be represented without nonphysical 
numerical diffusion. Conservation laws are simple to express since there are no 
fluxes out of the fluid element boundaries. The paths of the fluid elements are them- 
selves a flow visualization. It thus appears to be the natural approach to transient 
hydrodynamics with free surfaces, interfaces, or sharp boundaries. 

In practice, the use of Lagrangian methods in numerical simulations has 
generally been restricted to “well-behaved” flows. Shear, fluid separation, or even 
larger amplitude motion produce severe grid distortion. These distortions arise 
because grid points can move far enough that their near-neighbors change in the 
course of a calculation. When differential operators are approximated over a mesh 
which is distorting, the approximations may become inaccurate. Attempting to 
regain accuracy through regridding and interpolating physical quantities onto the 
new grid introduces numerical diffusion into the calculation. 

This paper is a summary and update of the latest additions and modifications to 
a numerical technique for indefinitely extending Lagrangian calculations by using a 
restructuring triangular mesh, first introduced by Fritts and Boris [ 11. The major 
advance of this approach is that the grid automatically adapts and refines itself to 
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maintain accuracy for discretized operators in a manner that is nondiffusive. The 
algorithms have been implemented in the code SPLISH, which has been applied to 
calculations of nonlinear waves 12, 33, flows over obstacles [4], Kelvin-Helmholtz 
instabilities [S], Rayleigh-Taylor instabilities [6], Couette flows, and Taylor 
vortex flows [7]. 

Work on Lagrangian techniques for grids which do not have fixed connectivity 
has recently had a renaissance. Early attempts included the PANACEA code [8] 
and the PAF (particle-and-force) algorithm [9, lo]. In the 1970s these concepts 
were improved and extended for triangular grids: triangle reconnection by Crowley 
[ll]; MHD algorithms over a triangular mesh [12]; and adaptive triangular 
meshes in the work mentioned in the previous paragraph on SPLISH. During the 
same period work began which used Voronoi meshes for hydrodynamics 
calculations [ 133. 

Recently this use of general connectivity grids has rapidly expanded, as sum- 
marized in the First International Conference on Free-Lagrange Methods [ 141. 
Applications now include finite-difference and finite-element calculations of classic 
hydrodynamic instabilities, tokamak modelling, high temperature plasma physics, 
heat conduction, wave-structure interactions, impact deformations and 
hydrodynamics problems for both compressible and incompressible fluids. Free- 
Lagrange methods now use quadrilateral, triangular, and mixed meshes in two 
dimensions, tetrahedral meshes in three dimensions, Voronoi meshes in both two 
and three dimensions, and methods which are mesh-free. 

In this paper we present the latest modifications to SPLISH (Section II). These 
include the most recent version of the rotation operator, which conserves cir- 
culation, and the residual algorithm, which ensures conservation of the area of cells. 
We also introduce new algorithms for viscosity and surface tension. Including 
viscosity proved to be straightforward (Section II). However, the search for an 
algorithm good enough for surface tension (Section III) was more challenging and 
difficult. The basic problem is defining a proper curvature from a finite number of 
points. Because of this, the numerical approximation of surface tension forces 
between two fluids is conceptually quite different from approximations of convec- 
tion and viscous forces. The final formulation chosen, a series of test problems, and 
a list of approaches that failed are detailed (Section III). Finally, we combine the 
convective transport, surface tension, and visocsity algorithms to perform some 
preliminary calculations of flows in and around a viscous kerosene droplet. These 
calculations show vortex shedding behind the droplet, distortion of the droplet due 
to the shear flow, and internal droplet flows. 

II. BASIC ELEMENTS OF LAGRANGIAN TRIANGULAR GRIDS 

This section is a review of the derivation of low order finite-difference 
approximations to the equations describing incompressible fluid motion for general 
triangular grids. Some of the material was originally presented by Fritts and Boris 
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[ 11, and the interested reader is referred there for more detail. However, new 
material brings the previous paper up-to-date. This includes the lastest version of 
the rotation operator, which conserves circulation, the residual algorithm, which 
ensures conservation of the area of cells, and the new algorithm for viscosity. 

A. The Triangular Grid 

Consider a two-dimensional space which is divided into triangular cells. A section 
of this mesh shown in Fig. 1, which shows an interface between fluid type I and 
fluid type 11. In Fig. la, a particular triangle j is highlighted by heavy lines and the 
various components of the triangle are labeled. Three vertices, V, , V,, and V,, are 
connected consecutively by sides S, , S2, and S,. The direction of labeling around 
each triangle is counterclockwise and the I axis is directed out of the page. Since the 
mesh can be irregularly connected, an arbitrary number of triangles can meet at 
each vertex. 

We can define a cell surroundmg a vertex, as shown in Fig. 1 b, by the shaded 
region surrounding C’,. The borders of such vertex-centered cells are determined by 
constructing line sigments joining the centroid of each triangle with the midpoints 
of the two triangle sides connected to the vertex, for all triangles surrounding that 
vertex. This definition of a vertex cell equally apportions the area of a triangle to 
each of its three vertices and provides a simple, efficient way to evaluate the finite 
difference operators. However, the definition of a vertex cell is arbitrary. Other 

FIG I A sectlon of a triangular grid showmg (a) a material Interface, (b) a vertex cell. 
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definitions could be equally well employed, although they generally require 
additional calculations to determine cell intersection points. The integration of cell 
quantities may therefore involve more arithmetic operations for other definitions. 

B. Finite Differences on a Triangular Grid 

Finite-difference approximations for derivatives of functions defined on the 
triangular grid are derived from the expressions for the integral of the gradient of a 
scalar function, f, and the divergence and curl of a vector field, v, in two Cartesion 
dimensions. 

j 
.4 

VfdA=$- fdlx: (2.1) 
c 

s 
V.vdA= ^ v.(dlxf) 

P (2.2) 
4 C 

s VxvdA= v .dll;. 
4 

(2.3) 

In each of these expressions, A is the region enclosed by the curve C and dl is the 
vector arc length around C in the counterclockwise direction. The variable Z is a 
unit vector in the direction of the ignorable coordinate. By using these definitions in 
a conservative integral approach, the definitions for spatial derivatives described 
below can be naturally extended to two-dimensional axisymmetric geometry [7]. 

Throughout the following discussion a triangle-centered quantity is assumed to 
be piecewise constant over the triangles with discontinuities occurring at the 
triangle sides and a vertex-centered quantity is assumed to be piecewise linear over 
the triangles. If we want to form a triangle-centered derivative, we use the triangles 
as the area A and the sides of the triangle for the curve C in Eqs. (2.1)-(2.3). We 
then approximate the area integral by the area of the triangle times the value of the 
derivative on the triangle, and approximate the line integral using the trapezoidal 
rule on each side of the triangle. For example, the gradient of a scalar function ,f 
defined at the vertices is a triangle-centered quantity, (Vf ),, given by 

A,(Yf), = f 1 f,(r, I - rr + I) x -‘, 
I( I) 

(2.4) 

where r, = (x,, I’,) is a vector coordinate for vertex i and A, is the area of triangle j. 
We have also used the notation of Fritts and Boris [ 1] that C,,,, is interpreted as 
the sum over vertices i of triangle j. In the material presented below, the index i 
designates vertex-centered quantities and the index j designates triangle-centered 
quantities. 

If we want to form a vertex-centered derivative, we use the vertex-centered cell as 
the area A. We approximate the area integral on the left side of Eqs. (2.1 t(2.3 ) by 
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the area of the vertex-centered cell times of value of the derivative at the vertex. We 
approximate the line integral using the value on each triangle and the appropriate 
vector length through the triangle. For example, the curl of the vector field v at a 
vertex c is approximated by 

A,(Vxv), =+ C ~,+~~.(r,+,-r,)f, (2.5) 
I(< ) 

where .4, = + C ,,< ,-4, is the vertex-centered cell area, C,,I, is a sum over the triangles 
around the central vertex c, &o is a sum over the vertices around vertex c, and 
V ,+ , z is the value of the vector field v on the triangle having vertices C, i, i+ 1. 
Similarly, the divergence of the vector field v at a vertex is approximated by 

.4C(V.v)(=$x [~,+,~x(r,+,-r,)l.f. (2.6) 
I(( ) 

C. The Equations for Incompressible, Inoiscid Flow 

The basic equations for inviscid incompressible hydrodynamics are 

(2.7) 

v.v=o, (2.8) 

In two dimensions the fluid density p, pressure p, and velocity v are assumed to 
vary with x, I’, and t. The term f, represents external forces applied to the fluid, for 
example, forces due to gravity. Equation (2.8), the condition for incompressibility, 
removes the sound waves. 

Since we want our finite difference approximation to preserve the conservation 
properties for incompressible inviscid fluids, it is important to consider which of the 
physical variables, p, v, and p, should be defined as vertex-centered quantities and 
which should be defined as triangle-centered quantities. We have found that 
prescribing velocities as triangle-centered quantities makes the formulation of 
conservation of circulation straightforward. Prescribing the densities on triangles 
and pressures at vertices allows conservation of vertex cell areas. 

The time integration of velocities uses a second-order implicit split-step 
algorithm which is solved by iteration. The vertex positions are advanced using a 
second-order midpoint rule. Specifically, the velocities are advanced a half timestep, 
the grid is advanced a full timestep, and then the velocities are advanced forward 
the other half timestep. The complete algorithm is as follows. First compute the 
half-timestep triangle velocities using 

v”=vy-fi(vp);+drI,., , 2P, 2P, 
(2.10) 
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where the superscript o designates the values at the old time step. We then make an 
initial guess for the new triangle velocities 

and iterate 

,, I 2.k = ;( “:’ + qt.” I ), 
I (2.11) 

X;.k = x:’ + &vf”.k, (2.12) 

F’2.k=R((x:‘}, (x~“),.v;~, / (2.13) 

where the second superscript indicates the iteration number. The vertex velocity v;,~ 
in Eq. (2.11) is obtained from a weighted average of the triangle velocities v:‘,~ for 
those triangles having i as a vertex, 

(2.15) 

We use w,=O,p,A,, where 8, is the angle (in radians) of triangle j at vertex i 
divided by 7~. The transformation R in Eq. (2.13) results from the requirement of 
conservation of circulation, and is discussed in Section D below. 

The pressures ( p, , n,k\ in Eq (2.14) are derived from the condition that the new 
velocities (v;‘.~) should be divergence-free at the new timestep, satisfying Eq. (2.8). 
The pressure Poisson equation is derived from Eq. (2.14) by setting (V . v,)“.~ = 0 to 
obtain a pressure pTk, such that 

(2.16) 

Both terms in Eq. (2.16) are straightforward to evaluate, since the divergence is 
taken over triangle-centered quantities. Note also that the discrete gradient 
operator V must also carry time advancement superscripts since it depends on the 
current grid location. (See Eq. (2.4)) Two features of the Poisson equation, 
Eq. (2.16), are noteworthy. First, it is derived from V’4 = V -V& as in the con- 
tinuum case. Second, the left-hand side results in the more familiar second-order 
accurate templates for the Laplacians (such as the live-point formula) derived for 
homogeneous fluids and regular mesh geometries. 

D. Conservation qf Circulation 

The approach we have outlined is basically a control volume approach which 
uses an integral formulation to derive the difference algorithms. Equation (2.13) 
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which produces conservation of circulation over vertex cell volumes, is a con- 
sequence of this approach. It reflects numerically the fact that the triangle velocities 
must be altered as the grid rotates and stretches. This process does not prevent the 
addition or loss of vorticity due to external forces or changes in density at inter- 
faces. Rather it corrects any numerical errors that may arise because the grid has 
moved. Thus it guarantees conservation of circulation at those vertices where the 
circulation theorem applies. 

The transformation R is derived by considering the circulation about each vertex. 
Since triangle velocities are constant over the triangle, the circulation taken about 
the boundary of the vertex cell can be calculated from Eq. (2.5). The conservation 
of vorticity then takes the form of the operator R which preserves the value of the 
circulation about each vertex as the grid changes. 

Conservation of circulation requires that at each timestep, and for each vertex, c, 

C i:$fz. (r;;“, - r;k) = 1 v,‘,Z, z. (rp+, -r;). (2.17) 
II< ) I(1 I 

For convenience in notation, we now drop the superscript + for the velocities and 
the iteration superscript k appearing in Eq. (2.17). Since there are two components 
of velocity on each triangle, but only one constraint at each vertex, the form of the 
rotator is undetermined. Fritts and Boris [1] provided the additional constraints 
by making each term in the circulation integral associated with a given triangle a 
conserved quantity, and hence the sum in Eq. (2.17) remains unchanged. This 
means that for each triangle j, 

f,.(r;+,-r;)=v,.(r;+,-r:)), i= 1, 2, 3. (2.18) 

Although this approach conserves circulation, the following example shows that it 
is much too restrictive. 

Consider an inviscid shear flow on the grid shown in Fig. 2a. Triangles above 
J’ = 0 have a velocity 11, = - 1, and those below have a velocity L’, = + 1. If after one 
step the vertices have moved as in Fig. 2b, conservation of circulation through 
Eq. (2.18) imparts a Jt-component to the velocities for those triangles bordering the 
shear. Although the circulation integral about each vertex in the grid is conserved, 
the flow is now no longer independent of ,r. 

To obtain a better formulation of the transformation R we must consider 
Eq. (2.17) more carefully. Since Eq. (2.17) is linear in the unknowns {v,}, we can 
obtain the change in triangle velocities by considering the change produced by the 
movement of a single vertex c, with coordinates rr, and sum the resultant 
expression over all vertices. It is reasonable to assume that the rotator should 
change only the velocities of the triangles which have c as a vertex. As a result, 
conservation of circulation gives 

? r+L2.(r:1-rr+L )+?,-,~z.(r,-,-r:') 

=v,+~ 2.(r:)--,+I ) + v, l;z. (r, - , - r:) (2.19) 
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FIG. 2. A test problem for conservation of clrculatlon: (a) the initial flow pattern; (b) the velocrtles 
after a half-time step, (c) the velocities after the old rotator operator is applied. 

for each vertex i about c. We have used r, = r; = r; for those vertices which are 
stationary. If only vertex c moves, the cell area at vertex c is constant, so that 
vorticity is conserved about vertex c as well. However, at all neighboring vertices, 
circulation, not vorticity, is conserved. By introducing the notation 

6V r+I~2--,+l.2-V,+I2 

and 
& sr”-pJ ‘ ‘ <’ 

Eq. (2.19) may be rewritten as 

6V r+l.2.(r:I-rr+I )+6v,_,..,.(r,~,-r~)=(~,-,~~-v,+,~~).6r,. (2.20) 

Let us also decompose 6v, + ,;2 into a component, t,, ,,z, parallel to the side 
opposite vertex c, and a component, n, + ,,2, normal to the side opposite vertex c by 
writing 

fx(r,+,-r,) r 
SV ifI - rr 

r+1,2=nr+12 
Ir -r,I 

i-t r+ I;? 
l+l Ir If1 -r,l' 

(2.21) 

With this notation and using the equation for the area, A,, , 2, of triangle i+ l/2. 

2A I+ b2 = 2 C(r, + , - r,) x (r:l - rr+ l )I, (2.22) 
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Eq. (2.20) becomes 

2A ,+I,2 

Ir r,I 

I1 rtl2 +( 
r I+1 -r,).(r:l-r,,,) 

,+I- Ir 

t If I;2 
ItI -r,I 

-2A,+ I,2 
+ir,-r,+,l n’+‘z+ 

(r,--r,-l).(rr- I-‘:)~ 
lrr-rr+II 

r-l z 

=(v,+, 2-v,+l 2).6r,. (2.23) 

Let N, denote the number of triangles (vertices) about an interior vertex c. The N, 
equations given by Eq. (2.23) for the 2N, unknowns (t,, ,,,) and {n,, ,;z) are 
linearly dependent. This can be seen by summing the equations, which produces the 
equation for the change in circulation about vertex c. The equation for the change 
in circulation at vertex c is a linear combination of the r, + I:z’s, which is equal to 
zero. Since we want the t , + li.Z’s to be linearly independent, we can set t, + l,‘2 = 0 for 
all i. We still need another equation to determine the normal component for the 
change in velocities on the triangles. 

Let us for the moment write that equation as 

ic r+l,2n,+l 2 = 6. (2.24) 
!=I 

Using Eq. (2.23) with t,, l:2 = 0 for all i, we can successively eliminate each n, + , ,2 
for i = 1, . . . . N, - 1 in Eq. (2.24) until we arrive at an equation for nN,+ liz. Since the 
numbering of the triangles and vertices is arbitrary, this expression is valid for each 
triangle i+ l/2 by replacing nN, + l.Z with n,, I 2 and v,,vC + l;2 with v,+ l!2. The result is 
that 

;x(r,+l-rr) 6v - ICI a= 2A r+lZ 

ck + I:2 2jllk+’ -rkI(vk+l.:2-v,+l,2).6r, 
k+ I:2 

1 Ck+‘~jllk+L-rkI. k(c) k+ I!2 

(2.25) 

Several alternatives are possible for Eq. (2.24). If we conserve divergence about the 
vertex c, then 

C It I;2 = Ir r+l -r,I, 
b = 0. 

(2.26) 

The transformation R prescribed by Eq. (2.25) is time-reversible, hence 
Eqs. (2.10t(2.14) are also reversible. The entire algorithm advances vertex 
positions and velocities reversibly while evolving the correct circulation about every 
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interior vertex. This technique is unique for Lagrangian codes, which usually either 
ignore conservation of circulation completely or conserve circulation through an 
iteration performed simultaneously with the pressure iteration. With this method 
the circulation is conserved exactly regardless of whether the pressures have iterated 
to their final values. 

Viscosity modifies Eq. (2.9), so that now 

dv 
p;i;+vp=f,+pV2V. (2.27) 

Discretization of the additional term in the momentum equation follows the same 
approach as the discretization of the other terms. Since the velocity is a triangle- 
centered quantity, we need a discrete vertex-centered gradient operator, and a 
discrete triangle-centered divergence operator. Employing the same techniques as 
above we have 

(2.28) 

and 

qw,=+ c c v,x(~,+l-~,-1~1.~~ (2.29) 
l(J) 

The Laplacian is found by taking the divergence of the gradient. 
The finite difference equations, Eqs. (2.10) and (2.14), can be modified to account 

for the additional term in the momentum equation by 

(2.30) 

(2.31) 

These equations are implicit in the velocities, just as the original Eqs. (2.1OH2.14) 
are. As in the inviscid case, we solve by iteration. 

This algorithm was tested by calculating the spreading of a shear layer of initially 
zero thickness given by 

(t’,, Oh for y>yo, 

v(x, y, t = 0) = (0, O), for y=y,, (2.32) 

(--KY, 019 for y < yo, 
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where J?,, is the original location of the vortex sheet. The velocity distribution across 
this layer evolves as 

( 1’ - J’o) 
V(X, y, t) = i D, erf (4vI)“z 1 [ 1 (2.33) 

where v = p/p. The width Ay of the layer grows as 

Ay z 8(vt)‘,‘. (2.34) 

For the test calculation the grid was initialized to center a vortex sheet in a grid 
16 cells wide with an initial layer width of zero. The two opposing streams had 
initially constant velocity profiles. The evolution of the interface between the 
streams was governed by the same algorithms as the interior of either fluid, so that 
no special interface boundary condition was used. The boundary conditions on the 
sides of the computational region were periodic, and the top and bottom had free- 
slip boundary conditions. 

At the end of the calculation, the layer width agreed to within numerical round- 
off with the theory and the layer extended over the whole mesh. The velocity profile 
for each stream coincided with that given by Eq. (2.33) to within round-off error. 
The J’-components of the velocity remained zero, indicating that the algorithm was 
working well for the grid distortions presented by the problem. 

F. Conservation qf Vertex Cell Areas 

Equations (2.10)-(2.14) are implicit in the triangle velocities (v,}. Because these 
equations must be solved iteratively to produce a divergence free velocity field, a 
small residual error may remain. In addition, vertex velocities are derived from the 
divergence-free triangle velocities. In practice this means that vertex cell areas may 
not be conserved. Furthermore, as the flow progresses, the triangle sides distort. Yet 
at any given time we compute using straight triangle sides, which does not produce 
the equivalent cell area about any given vertex. However, since we know what the 
triangle area should be, it is possible to at least make a correction to the known 
error. Our approach, then, is to perform an ad hoc correction step after all the ver- 
tices have been advanced in time. This correction step moves the vertices in order 
to conserve vertex cell area. After this vertex correction step, the rotator is applied 
to ensure that the circulation has not been changed. 

To expand or contract a vertex cell. area, we must expand or contract the 
surrounding triangles areas. Suppose we wish to expand a triangle j with area A, 
and vertex coordinates r, by an amount 6A,. To do this we will move each vertex rl 
an amount 

mew , -r,=6r,=n,[~x(r,-,+r,+,)]; (2.35) 

that is, the vertices of the triangle are moved normally to the opposite side by a 
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distance prescribed by the triangle expansion factor, d,. If d, is positive, the triangle 
area increases. Using the vector definition for the area of a triangle, we have 

26A, = 2AyCn - 2A, 

=[(r~w,-rr:‘“)x(r~~-r~~)].~-[(r,+,-rr)x(r,-r,~,)].~ 

= CP,+ l -r,)x(6r,~,-6r,+,)].f 

+ C(Sr,+, -chr)x(r,m,-r,+,)].I 

+[(Sr,+,-Sr,)x(dr,+-dr,+,)].Z 

=s’d,+6A,d2 /’ (2.36) 

where s2 is the sum of the squares of the sides of the triangle. This quadratic in the 
expansion factor, d,, can be solved to yield 

d, = 
- s2 + Js4 + 48A, 6A, 

12A, ’ 
(2.37) 

The sign in front of the square root was chosen to ensure d, has the same sign as 
6A,. 

We relate the change in triangle area, 6A,, to the conservation of vertex cell areas 
through 

(2.38) 

where the sum is over the three vertices of the triangle, A, is the current area about 
vertex i and A; is the original area about vertex i. Basically, the change in vertex 
cell areas is apportioned to each contributing triangle according to that triangle’s 
contribution to the vertex cell area. 

Although this residual correction is a small numerical effect, we have found that 
it improves the overall results of a calculation. Because this algorithm expands 
triangles, it has potential for modelling other physical processes. In a compressible 
algorithm involving energy release and fluid flows with transit times which are 
small compared to the energy release times, this algorithm could be used to 
produce the required expansion of the vertex cells. 

G. Grid Restructuring 

In Lagrangian calculations the grid may distort to the point where grid restruc- 
turing is necessary. The derivations of the reconnection and vertex addition and 
deletion algorithms are done through the control volume approach and the use of 
triangle velocities. For all the algorithms used, the area-weighted divergence and 
curl taken about each vertex are both identically conserved for grid reconnections 
and vertex addition. 
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The accuracy of a general triangular mesh is diminished by large obtuse angles 
within triangles. With reconnections, accuracy can be recovered by ensuring that 
large obtuse angles are preferentially eliminated. There are many ways of 
formulating a reconnection algorithm. The one we have chosen is based on 
requirements for solving the pressure Poisson equation. The pressure Poisson 
equation is formally equivalent to that obtained by a piece-wise linear Rayleigh- 
Ritz-Galerkin finite element procedure on a triangular grid. (See, for example, 
[ 151.) Since we solve the equation by iteration, we want the iteration to converge 
as rapidly as possible. Mathematically, convergence is assured if the finite difference 
equation has a maximum principle; that is, all the off-diagonal terms are negative, 
the diagonal term is positive and greater than or equal to the absolute value of the 
sum of the off-diagonal terms, with strict inequality for at least one equation. (That 
one equation typically involves boundary conditions. Our boundary condition 
prescribes the integrated pressure along the upper boundary.) 

To see how large angles affect the maximum principle, consider the difference 
equation for vertex I of Fig. 3a. The off-diagonal coeflicient relating vertex I to 
vertex j is 

a= -$cot e- +cot e’), (2.39) 

where 8 + and 8 are the angles opposite the line from the vertex j to the vertex I as 
shown in Fig. 3a. The other off-diagonal terms are determined in a similar manner 
from the remaining edges emanating from vertex 1. The diagonal coefficient is the 
negative of the sum of the off-diagonal terms. For positive area triangles, 8’ and 
8- are both between 0” and 180”. Hence, each term in Eq. (2.39) is negative only 
when 8+ + B- > 180°, since 

sin(e+ + e-) 
a=2sin0+ sine-’ 

(2.40) 

The reconnection algorithm ensures that the angles subtended by any given edge 
sum to no more than 180”. If 0+ + 8- is greater than 180”, the grid line is recon- 
nected as shown in Fig. 3b. The new angles, fY+ and 8’-, must sum to less than 
180” since (f3+ + tJ + 8’ + + 8’- ) is the sum of the interior quadrilateral angles, 

FIG 3. (a) Detinitlon of the angles l?+ and & for the diagonal line drawn from j to /. (b) The angles 
0’ + and 13~ formed by connectmg the other quadriliateral diagonal. 
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which must be 360”. By chasing the diagonal which divides the largest opposing 
angles, the reconnection algorithm preferentially eliminates large angles in triangles. 

Interface sides are never allowed to reconnect. In such cases vertex addition 
algorithms are needed. Vertex addition algorithms are also needed where the flow 
naturally depletes vertices. For vertex addition, satisfaction of conservation 
integrals is particularly simple. The vertex added at the centroid of a triangle sub- 
divides that triangle into three smaller triangles. A vertex added to the midpoint of 
a side subdivides the two adjacent triangles into four smaller triangles. If the new 
triangle velocities are all the same as the velocity of the subdivided triangles, all 
conservation laws are satisfied. Since the reconnection algorithm is also conser- 
vative, subsequent reconnections to other vertices ensure that the only effect of the 
addition is an increase in resolution. 

The case is not as obvious for vertex deletion. Reconnections can be used to 
surround any interior vertex whithin a triangle. The vertex is then removed and the 
new larger triangle given a velocity which is the area-weighted sum of the old 
velocities, 

A,v,=A,v,+A,v,+A,v,. (2.41) 

Such a substitution redistributes circulation in accordance with area coordinates. 
Figure 4 illustrates the triangles before and after vertex removal. If i4 is the vorticity 
about vertex 4 before it is removed, then the vorticity about each of the other three 
vertices is increased by an amount ii given by 

i; = A,i,IA,, 

i; = AkicJAj, 

i; = ~4rL/A/t 

(2.42) 

where 
i; + i; + i; = ij, 

since 
A, + A, + A, = A,. 

Therefore, total vorticity is conserved and redistributed in a reasonable and natural 
manner. 

FIG. 4. (a) Vertex 4 Isolated wlthin a larger triangle before its removal. (b) The larger triangle 
remainmg after deletion of vertex 4 and three associated sides and triangles. 
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III. SURFACE TENSION 

A. The Algorithm 

The surface tension at an interface between two materials depends on the 
curvature of the interface. In the conventional numerical representation of surface 
tension, it is cast into a finite-difference form by fitting vertices on the material 
interface to some parametric function. This function is then used to find an estimate 
of local curvature. Once the curvature is known, a surface tension force is evaluated 
and used to accelerate interface vertices. 

This scheme fails in SPLISH for two reasons. First, the interface vertices are 
accelerated directly by surface tension forces evaluated on the vertices. Since 
velocities are centered on triangles in SPLISH, the velocity field sees the effect of 
the acceleration a half timestep later, unless a secondary calculation is made. As a 
result, the pressure calculated within the droplet is inconsistent with that found 
from the surface tension formula. Second, since the pressure gradient forces and 
surface tension forces are not calculated in the same manner, numerical errors result 
which grow with each timestep. 

Both of these problems are eliminated by a different formulation of surface 
tension, in which a surface tension potential is used to generate the forces. The 
surface tension force is formulated as a gradient of a potential present only at the 
surfaces. With this method, the pressure gradient forces are calculated in the same 
manner and on the same grid as the forces derived from the surface tension 
potential. Therefore both the surface tension potential and the pressure are 
dynamically similar, and the physical pressure drop across the interface must 
exactly cancel the surface tension forces. Preliminary aspects of this work were 
described by Fritts et al. [ 16, 171. 

The finite-difference algorithms for surface tension are straightforward. The 
surface tension forces are included through Laplace’s formula for the pressure jump 
across an interface [IS], 

P, - P,, = alR> (3.1) 

where p, is the pressure just inside the droplet at the interface, pO is the pressure 
just outside the droplet at the interface, 0 is the surface tension coefficient 
associated with the two media which define the interface, and R is the radius of cur- 
vature in the two-dimensional plane. The radius of curvature is positive at points 
on the interface where the droplet surface is convex (a circle is convex everywhere) 
and negative when the surface is concave. These pressure jumps are included in the 
Poisson equation for the pressure. The average pressure, (p, + p,)/2, is computed at 
the interface vertices. From the average pressure and the pressure jump, we can 
compute a pressure gradient centered on triangles, both inside and outside the 
surface. This pressure gradient is used in the momentum equation. 
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The radius of curvature is computed from a parametric cubic spline interpolant 
to the interface vertices. Past calculations of droplets oscillating due to surface 
tension forces [ 19, 201 also use cubic spline interpolation. However, they divided 
the surface into at least four segments (the top, bottom, right, and left sides of the 
droplet) to produce an interpolant on each segment. Each interpolant was matched 
at the joints to produce an overall curve. The parametric interpolant used here does 
not require this special matching. 

The parametric spline is produced in the following manner. Denote the interface 
vertices by r, = (x,, y,), i= 1, . . . . N, with rN = r,. Also define a pseudo arc length 
parameter, s, such that the spline knots occur at the points 

s, =o, 

s, = s, , +Irr-rr-lI, i = 2, .,., N. 
(3.2) 

We generate the twice differentiable periodic spline interpolants, r(s) = (X(S), y(s)) 
from the data (s, :, and {r,}, i= 1, . . . . N, as prescribed by DeBoor [21]. The 
curvature is then given by 

Ir” x r’( 
KER-~=~, (3.3) 

where the prime indicates differentiation with respect to the parameter s. The sign 
of R at an interface vertex, rl, is given by the sign of 2. [(r,, , -r,) x (r,+, -r,)]. 

We can iterate the process if necessary. From the spline fit we can generate new 
values for the {s ,> by integrating the expression for arc length along a 
parametrically prescribed curve. For symmetrically placed vertices on a symmetric 
droplet, however, we have found that the iteration on arc length parameter is 
unnecessary. 

The parametric spline fit is also used for regridding. When the regridding 
algorithm calls for the bisection of a triangle side which borders the two media, a 
new vertex is added on the spline interpolant between the vertices. This is done 
rather than bisecting the straightline segment, since a straightline bisection 
introduces spurious interface oscillations. Bisecting the spline maintains a better 
overall shape for the interface. 

B. Test Results 

We tested the algorithm for surface tension in SPLISH using two test problems. 
The first test problem consists of internal capillary waves. In the second test 
problem we calculated the oscillation of a droplet due to surface tension. For com- 
pleteness we also present calculations of internal gravity waves as a test of the 
overall hydrodynamic algortithms in SPLISH. 
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I. Internal Gravity and Capillary Waves 

The linear theory for the small amplitude oscillation of an interface between two 
fluids, bounded above and below by solid walls, gives the frequency o as a function 
of wavenumber k, 

(J= (p-p’)gk+ak3 
p coth kh + p’ coth kh” 

Here the upper fluid is of depth h’ and density p’, the lower fluid is of depth h and 
density p. g is the acceleration due to gravity and r~ is the coefficient of surface ten- 
sion for the two media. Following the free-surface wave calculations of Fritts and 
Boris [ 11, we take k = 27r/1, A= 2.5 cm, h = h’ = 1.0 cm, p = 2g/cc, and p’ = lg/cc. 
For an internal gravity wave, we have g = 980 cm’/s and G = 0 dynes/cm. For an 
internal capillary wave, we have g = 0 cm’/s and g = 30 dynes/cm. These values give 
a period t = 2n/o = 0.22073 s for the internal gravity wave and r = 0.50196 s for the 
internal capillary wave. The amplitude of the oscillation is taken as A = 0.0672h. 
For this amplitude the free-surface oscillations of Fritts and Boris [l] showed 
negligible non-linear effects. Figure 5 shows the initial grid for the mesh size 
6s = 0.125 cm. 

Figure 6 shows the wave period as a function of mesh size for the internal gravity 
wave problem. The ratio of timesteps for any two calculations was the same as that 
for the mesh sizes. Each data point on the curve is an average over several periods 
and is accurate to three digits. If we extrapolate to zero mesh size using a parabolic 
least-squares lit, T = r,+ h&r+ a(&)’ to the data points, we obtain r,=O.2214, 
h = 0.0726, and a = 0.1549 for this problem. The extrapolated value, TV, is accurate 
to 0.3 %. The finite-difference derivatives given in Section II are accurate to second 
order in the mesh size for triangular grids in which the centroid of a vertex cell is 
the vertex itself. The truncation error is linear in the distance between th vertex and 
the centroid of the vertex cell. This truncation error can occur in this problem for 
vertex cells near the interface in our discretization and hence the linear term in 6s 
in the above quadratic expression. This linear term has a coefficient on the order 
of the wave amplitude which is the approximate distortion of the grid. The order 
of convergence for the algorithm is essentially quadratic with a small linear 
contribution. 

Figure 7 shows the wave period as a function of mesh size for the internal 
capillary wave problem. Here the least-squares fit to the data gives 7. =0.4995, 
b = 0.2198, and a=0.0640. The extrapolated period is accurate to 0.5%. With 
surface tension included, the convergence is primarily linear in the mesh size. The 
reduction in rate of convergence is due to the use of cubic splines to calculate the 
curvatures. The cubic spline curve itself is fourth-order accurate, and theorems exist 
showing the second-order accuracy of its second derivatives. However, we know of 
no theorem giving the accuracy of the combination of derivatives needed to 
produce the curvature in Eq. (3.3). 



366 FYFE, ORAN, AND FRITTS 

SPLISH 0 OOE+OO 

O.ZOOE+O 1 

O.OOOE+OO 

O.OOOE+OO 0 250E+Ol 

FIG. 5. The imtial grid for the internal wave test problems. 
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FIG. 6. The penod T as a function of mesh size for the internal gravity wave test problem. 
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FIG 7. The period T as a function of mesh size for the internal capillary wave test problem. 

2. Droplet Oscillation 

As a further test of the algorithm for surface tension in SPLISH, we calculated 
the oscillation of a droplet due to surface tension. Rayleigh [22] derived a linear 
theory for small amplitude oscillations on cylindrical jets that applies to the cylin- 
drical droplets we are discussing. He concluded that when the perturbation is 
totally in the plane perpendicular to the axis of the cylinder, the frequency, o, for 
the oscillation is given by 

w;=(n’-n)L 
pa3’ (3.4) 

where the surface of the droplet is given in polar coordinates by 

r=a+Ecos(rd), (3.5) 

where p is the density of the jet, a is the unperturbed radius of the jet, and n 
prescribes the mode of oscillation in the plane with amplitude E. For large 
amplitude oscillations, Rayleigh found that the experimental frequency diverged 
from that predicated by the linear theory, and he attributed these difference to non- 
linear effects. 

We have extended Rayleigh’s theory to include the presence of an external fluid. 
Equation (3.4) then becomes 

(3.6) 

where P<, is the droplet density and pe is the density of the external fluid. 
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The tests of the surface tension algorithm consisted of a series of calculations of 
oscillations initiated in the lowest oscillating mode, n = 2 in Eq. (3.6). Also, we have 
chosen 

a = 0.0125 cm 

CJ = 30 dynes/cm, 

values which are typical for many practical droplet problems. We discuss results for 
two different sets of conditions. First we consider a droplet density of 2 g/cc in a 
background external fluid density of 1 g/cc. If we use the definition of the period as 
27t/(u, Eq. (3.6) gives a period 

5 = 1.13 X 10-k 

The second set of conditions are for a kerosene droplet, with density 0.82 g/cc, in a 
background of air, with density 0.0013 g/cc. This second case, with the 650: 1 
density ratio, is a stringent test of the numerical approximations. 

Figure 8 is a composite of frames from a calculation in which E = 0.2~ = 
0.0025 cm for the 2: 1 density ratio case. In this calculation there are 17 vertices in 
each direction along the exterior boundaries, 12 vertices on the droplet interface, 
and a total of 313 vertices initially in the calculation. The computational domain is 
0.1 cm on a side. The left and right boundaries are periodic while the top and 
bottom boundaries are solid walls. The timestep is 6r = 2.5 x 10P5 s. The figures 
show four and a half oscillations of the droplet. We can see that as the calculation 
proceeds, no new vertices have been added, but in fact some have been subtracted. 
This was the case because the initial gridding was adequate to represent the droplet 
shape. From these calculations, the period of oscillation is 

T I* = 1.35 x lo-‘s. 

Similar calculations with 20 vertices surrounding the droplet (a 21 x 21 grid) show 
a period of 

T 20= 1.33 x lop3 s, 

for 24 vertices surrounding the droplet (a 25 x 25 grid) we have a period of 

T 14= 1.31 x lo-‘s, 

and for 28 vertices surrounding the droplet (a 33 x 33 grid) the period is 

T 28 = 1.27 x lo-‘s. 
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FIG. 8. A composite of frames from a calculation of an n = 2 normal mode droplet oscillation with 
I2 vertices around the droplet, p, = 1 g,‘cc. P,,= 2 g/cc, c = 30 dynes;‘cm, a = 0.0125 cm. Each frame is 
0 1 x 0.1 cm’. 

In each case, the period does not change during the calculation. Figures 9 and 10 
show the initial oscillation for the more resolved cases. For these calculations, it 
was necessary to decrease the timestep, as discussed below. The time step for the 
calculation with 12 vertices surrounding the droplet is such that the period cannot 
be resolved to better than two digits. It appears that the calculations are not 
converging to the theoretical value, but to a value of 1.19 +0.06s, based on the 
graph of the computed period as a function of mesh size shown in Fig. 11. The 
convergence is essentially linear as it was in the internal capillary wave test 
problem, but with a numerical error of about 5.5 % for this calculation. 
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Time (s) 0.00 6.59 x 10-4 

FIG. 9. A compostte of frames from a calculation of an n = 2 normal mode droplet oscillation with 
24 vertices around the droplet. Same condttions as m Fig. 7. 

Time (8) 0.00 6.34 x lo-’ 1.27 x low3 

FIG. IO. A composite of frames from a calculation of an n = 2 normal mode droplet oscillation with 
28 vertices around the droplet. Same conditions as in Fig. 7. 
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FIG. I I The period as a function of mesh we for the droplet oscdlation problem 

Since the internal wave tests show much better convergence properties for the 
algorithm, as do previous free-surface wave calculations [ 1, 23, than the droplet 
oscillation test problem, we performed several other numerical tests on the droplet 
oscillation problem to determine if the poorer convergence properties were due to 
other numerical parameters. 

First, we tested whether the presence of boundaries a finite distance away could 
alter the calculated period by performing calculations in a larger domain of length 
0.2 cm. Here there were twice as many vertices on the boundary, but still only 12 
vertices surrounding the droplet which was the same size as the droplets in the tests 
described above. These calculations showed no change in period, so we conclude 
that the effects of periodic boundaries and reflecting walls are negligible. 

It was also important to evaluate the possible effects of nonlinearity in the 
solution. The theoretical value is from a linear analysis, and the calculation is a full 
nonlinear calculation. It is possible that this could account for part of the dis- 
crepancy. To test this, we performed calculations with smaller amplitudes, E, to see 
if there was any difference in calculated period. The result was that the numerical 
value of the period was the same for E = 0.01~ = 0.000125 cm over the course of two 
oscillations as it was for E = 0.20. Our conclusion is that the calculations were in a 
range in which the linear theory is valid. 

We used two diagnostics to determine the period of the computed droplet 
oscillation. One is the time history of the position of the rightmost vertex on the 
droplet interface, denoted by x,. The other diagnostic is the quadratic moment, 
defined by 
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TABLE I 

16 x 16 Grid 

Time Last period (x2) 

0.0000 
06500E-03 
0.1300E-02 
O.l975E-02 
0.26OOE-02 
0.3250E-02 
0.39OOE-02 
0.45508-02 
0.52006-02 
0.5850E-02 
0.65006-02 
0.7150E-02 
0.7775E-02 
0.8425E-02 
0.9075E-02 
0.9725E-02 
O.l037E-01 
0.1 IOOE-01 
O.l165E-01 

0.0013 

0.0013 

0.0013 

0.0013 

0.0013 

0.001275 

0.0013 

0.0013 

0.001275 

0.3061 E-07 
0 1426E-07 
0.29296-07 
O.l497E-07 
0.282lE-07 
O.l563E-07 
0.27116-07 
0.16266-07 
0.2627E--07 
O.l677E-07 
0.25568-07 
0 1718E-07 
0.2493E-07 
O.l757E-07 
0.2435E-07 
O.l793E-07 
02387E-07 
O.l827E-07 
0.2349E-07 

TABLE 11 

16 x 16 Grid 

Time Last period 

o.oooo 
0.6250E-03 
O.l325E-02 
O.l975E-02 
0.2600E-02 
0.3275E-02 
0.39006-02 
0.4550E-02 
0.5225E-02 
0.5825E-02 
0.6525E-02 
0.7150E-02 
0.7775E-02 
0.8450E-02 
0.9050E-02 
0.9725E-02 
O.l037E-01 
0.1 lWE-01 
O.l167E-01 

0.001325 

0.001275 

0.0013 

0.001325 

0.0013 

0.00125 

0.001275 

0.001325 

0.0013 

O.l500E-01 
0.9974E-02 
O.l486E-01 
O.l046E-01 
O.l463E-01 
O.lOME-01 
0.14236-01 
O.l078E-01 
O.l4OOE-01 
O.l104E-01 
0.1392/Z-01 
O.l13lE-01 
O.l378E-01 
O.l140E-01 
O.l355E-01 
O.l146E-01 
O.l335E-01 
O.l159E-01 
O.l332E-01 
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The surface tension algorithm discussed above suffers a basic problem in curve 
fitting. We are trying to approximate an unknown continuous function by a known 
curve through a finite number of points or computational cells. For example, we are 
trying to represent the droplet interface or capillary wave interface by a spline lit to 
a finite number of points. Whereas an accurate interpolant can be found that goes 
through a set of points, it is not always clear that the other properties of the curve 
calculated at the points, e.g., the curvature, are well represented by this interpolant. 
Splines are notorious for introducing spurious oscillations between the points 
defining them initially. 

Figure 12 shows the curvature at each vertex around the droplet. The exact 
curvature for the initial drop is compared to the curvature produced by the spline 
interpolant and to curvatures produced after one oscillation is completed. The 
initial curvature, defined by splines on the interface vertices, is reasonable. 
However, by the end of a cycle, there are spurious oscillations even though the 
curvature has the same basic shape. 

In the internal capillary wave problem, the range of values for the interface 
curvature was a factor of 15 smaller than for the droplet oscillation problem. As a 
result the interface curvature for the internal capillary wave is determined with 
greater accuracy. In the droplet oscillation problem where the interface “bends” 
more sharply, the spline has a greater difficulty approximating the curvatures 
accurately. 

Interpolations can cause other problems in the calculations. Our calculations 
have shown that the final result can be affected by the location of additional ver- 
tices used to obtain a better initial approximation of the droplet interface. The grid 
initialization procedure involves two phases: a first phase to generate a course grid, 

120 

oL- i 
0 2 a i ’ lb 12 

VERTEX 

FIG. 12. Curvature as a function of vertex index around the drop in the 16 x 16 calculation: (1) exact 
solution; (2) initial spline; (3) after one oscillation. 
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and a second phase which relines the grid produced in the first phase. During the 
refinement phase, we have two chices for the location of new interface vertices. The 
initial grid produced in Fig. 8 placed new vertices on the droplet defined by the 
Rayleigh oscilation mode. We could also add the vertex on the existing spline inter- 
polant. Figure 13 shows (x’) as a function of time for the two types of 
initialization. The curve labelled 1 is the calculation in which the additional vertices 
were placed on the Rayleigh drop. The curve labelled 2 placed the additional 
vertices on the spline lit. After one oscillation, the value of (x’) differs by 8%. 
After one oscillation the value of (x2) on the curve with label 1 is lower than the 
initial value of (x2) and the value of (x’) on the curve with label 2 is higher than 
the initial value of (x’). Notice also that the period, as well as the amplitude, is 
affected by the type of initialization. 

In Fig. 8 we see that the amplitude of the droplet oscillation decays as a function 
of time even though the period is not changing. The damping rate is about 18 % per 
oscillation. The shape of the droplet at the end of the calculation is notably different 
than it was at that same place in an earlier oscillation cycle. In the ideal case, this 
would not occur. 

The decay of the oscillation is also apparent in the moment (x’) and the 
variation in the location of s, from oscillation to oscillation. It is apparent from 
Fig. 14 that the (.Y’) moment is dissipating, and it is apparent from Fig. 15 that the 
overall shape of the droplet is changing. Energy associated with this lowest-mode 
oscillation is going into other modes, which is reflected in the reduction of the 
timestep required to keep the computations stable. In general, to carry out these 
droplet oscillation calculations it was necessary to reduce the timestep to the point 
where we could resolve the highest mode of oscillation the droplet could support at 

40, 

35 ,\ 
2 

FIG. 13. The moment (I’) as a function of time for two initializations: (1) all initial vertices on the 
Rayleigh drop; (2) Initial relining vertices on the splme interpolant. 
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FIG. 14 The moment (d) as a function of time m the 16 x 16 calculation. 

a given resolution. When we doubled the resolution around the droplet, we found 
that the timestep had to be decreased by a factor of about 2.8. This is consistent 
with the analysis which says that since the period is inversely proportional to n3’2, 
where n is the mode of oscillation. Increasing the resolution of the droplet interface 
by a factor of 2 means that the timestep must decrease by a factor of 23’2~2.8. 

A physical mechanism for the observed decay in the n =2 normal mode 
oscillation is in the existence of a resonance between the n = 2 and the n = 3 normal 
modes; that is, wj = f20,. A similar behavior in three dimensions has been 
analyzed by Natarajan and Brown [23]. In their three-dimensional analysis, 
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FIG. 15. The positlon of the rlghtmost vertex, x,, as a function of time m the 16 x 16 calculation. 
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significant energy can be transferred from one resonant mode to another within ten 
oscillations. 

In summary, the total damping rate for the droplet oscillation calculation is 
roughly 18% for the n = 2 mode. Much of the energy from this mode is transferred 
to higher harmonics, as evidenced by the calculated droplet shapes, curvatures, and 
the numerical timestep limitations. The difference in initialization procedures alone 
produced an 8% change in amplitude. Since the total numerical error is 5.5%, we 
conclude that the majority of this error arise from the inability of the spline tit to 
approximate large curvatures accurately. This error is large enough to mask other 
error contributions, so that we cannot evaluate additional error terms other than to 
indicate that they are apparently much smaller than that due to the spline fit. 

However, despite all the problems with spline fits, we found that they provided a 
good way to calculate curvature. In the search for better curvatures, we have also 
tried other methods, none of which produced better results. We enumerate these 
attempts both for completeness and to emphasize that better numerical 
approximations for curvature are still needed to permit more accurate calculations 
of surface tension. 

(1) We averaged the curvature between the vertices, such that 

1 
s 
)I+ I 

K,= K(s)ds. s r+l -St-I s,-, 

The results were found to depend sensitively how how the integral was actually 
performed. However, integration produced results which were no better than the 
pointwise curvatures discussed above. 

(2) We smoothed the curvatures K, with a least squares linear spline. This 
method worked well for one period, but the method failed on subsequent 
oscillations. 

(3) We used a circular arc to calculate the curvatures. A circle was placed 
through the three adjoining vertices. The radius of that circle was used as the radius 
of curvature for the interface at the center vertex of the three vertices. This method 
did not work at all. The droplet interface distorted wildly within the first oscillation. 

(4) We used splines under tension. This approach introduced a free 
parameter which could not be consistently determined. 

(5) Based on the experiences of Foote [20], we tried producing an inter- 
polant through every other vertex and averaging the result. The motivation was 
that fewer points could introduce fewer oscillations, and that averaging the inter- 
polants could damp the oscillations. This produced poor results. The calculation is 
really the average of two calculations with half the original accuracy. 

(6) We considered but did not implement nonlinear splines [24]. Although 
these splines produce differentiable curvatures, there is no guarantee that there 
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exists such a spline through a given set of points and, if such a spline does exist, 
there is no guarantee that it is unique. 

(7) We considered several methods for calculating an interpolant based on 
the Rayleigh modes. The high mode oscillations could then be eliminated. None of 
the schemes we considered gave better results than the spline interpolant, and all 
introduced arbitrary parameters into the calculation. These parameters could be 
well determined for a particular known shape, but could not be determined for a 
general unknown shape. 

IV. INCOMPRESSIBLE FLOW ABOUT A DROPLET 

In this section we present some preliminary calculations of forced, asymmetric 
drop oscillations induced by flow around a droplet. These calculations include both 
the effects of viscosity and surface tension. The capability of studying such flows for 
highly viscous droplets in shear flows, in two and eventually in three dimensions, is 
the motivation for developing the viscosity and surface tension algorithms. 

The initial conditions we used specified an initially steady-state potential flow 
about a periodic series of cylinders. Again, the boundary conditions on the left and 
right sides are periodic, and the upper and lower boundary conditions are reflecting 
walls. Initially. a perfectly circular droplet is at rest in a background flow. A 
physical situation modelled by such an initialization might occur if the flow velocity 
were ramped up to its final value before any significant structure could develop in 
the flow, and before the droplet could pick up any substantial velocity. Basically, it 
is a smooth start for the calculation. Previously we had performed calculations 
which began with an impulsive start, but found that as a result there was a large 
amount of momentum transferred across the droplet interface early in the 
calculation. 

The calculations presented here model the forced fluid flow due to a fast air 
stream about an initially stationary kerosene droplet. The physical parameters, 
given in Table V, are appropriate for a combustor environment. A total of 309 
vertices were used to initialize the problem, with 12 vertices at the droplet interface. 
Figure 16 follows the evolution of pathlines in the internal and external flow fields 

TABLE V 

Density of kerosene 
Density of au 
Surface tension (STP) 
Viscosity of kerosene 
Viscosity of air 
Air velocity 
Initial droplet velocity 
Droplet radius 

0.82 g/cc 
0.00 I3 g/cc 
30 dynes/cm 
1.8 cp 
0.018 cp 
100 or 120 m/s 
0.0 m/d 
125 qrn 
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FIG. 16. Pathlmes from a calculation of au llowmg past a deforming, viscous kerosene droplet. 

Surface tension forces are Included at the material Interface. Heads of pathlines are the current vertex 
posItIons and the tails are made up of the previous live positions. The flow speed IS 100 m.‘s and 
Re z 1600 

through a series of timesteps. For an air velocity of 100 m/s and a droplet radius of 
125 pm, the corresponding Reynolds number is roughly 1600. The pathlines are 
defined by the paths of vertices over five timesteps. By the last frame of Fig. 16, the 
fluid originally to the left of the droplet has progressed through the mesh and 
interacted with the face of the (next) droplet. 

The first clear indication of the development of the recirculation region is seen in 
the fourth frame of Fig. 16, which shows a pair of counter-rotating vortices. The 
recirculation zone continues to develop throughout the calculation, although at 
times the vortex pair is not as evident due to the deletion and addition of vertices, 
which interrupt the continuity of the pathlines. By the last frame, another pair of 
vortices is forming near the droplet, and the original pair has been shed. The 
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FIG. 17. Frames showing m triangular grid at the same times as shown for the pathlines in Fig. 14. 

leading face of the droplet is now quite distorted, and the droplet is about to enter 
the wake of the preceding droplet. 

Distortions in the face of the droplet are evident in at least the seventh frame. 
These distortions occur because the curvature has increased and the streamlines in 
the external flow are condensed by the approaching wake. The internal velocities 
are small compared to the external flow rates and therefore cannot be distinguished 
as pathlines. However, indication of the (small) internal recirculation may be 
obtained by comparing internal vertex positions at various timeteps. 

Figure 17 shows the grid at times in the calculation corresponding to those in 
Fig. 16. During the course of the calculation, a great deal of vertex addition and 
deletion has occured. Vertex addition, however, is most noticeable in the wake of 
the droplet and around the droplet interface. Whereas there were 300 vertices at the 
beginning of the calculation, there are 450 at the end. 
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t 

FIG 18. Pathlines from a calculation similar to that shown in Fig. 14, but with a flow velocity of 
120 m,!s and Re 2 2000. 

Figure 18 shows the pathlines for a simulation with the air speed increased to 
120 m/s, corresponding to a Reynolds number of 2000. The fluid now completely 
passes through the mesh. The fluid initially near the droplet has completely passed 
the next droplet by the time the calculation was terminated. The initial flow about 
the droplet is similar to that shown above, except for a more pronounced flattening 
at the face of the droplet due to the higher flow speed. The wake develops in much 
the same manner, but it now interacts strongly with the flow at the forward 
stagnation point on the droplet. Oscillations in the flow due to the wake are trans- 
mitted to the forward face of the droplet and give rise to fairly large perturbations. 

As seen in Fig. 19, the computational grid needs further refinement at this time 
because the perturbations cannot be resolved by the limits set on minimum triangle 
size originally chosen for the calculation. A sign that the calculation is under- 
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FIG. 19. Frames showing the triangular grid at the same times as shown for the pathlines m Fig. 16. 

resolved is that one of the crests of the surface wave is spanned by a single triangle, 
a situation which allows no communication of that surface fluid with the interior of 
the droplet. In order to continue the simulation, better resolution must be obtained 
about the droplet surface. Another algorithm is currently being included to allow 
higher resolution near points of large curvature at material interfaces. 

V. SUMMARY AND CONCLUSIONS 

This paper presented the current algorithms included in the code SPLISH, a two- 
dimensional Cartesian Lagrangian treatment of incompressible flows with a 
dynamically restructuring grid. The new rotator algorithm is an improvement on 
the one previously used for conserving circulation. The residual algorithm ensures 
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conservation of the area of cells. These algorithms together with the original 
SPLISH framework constitute an extremely flexible code for calculating incom- 
pressible flows in highly distorted geometries or with obstacles in the flow. 

New algorithmms for modelling the physical effects of viscosity and surface 
tension have been added. Whereas adding the viscosity algorithm was relatively 
straightforward, adding surface tension caused a number of numerical problems. 
Detailed benchmarks of the final algorithm selected were presented using internal 
capillary waves and a Rayleigh oscillating droplet as test problems. The surface ten- 
sion algorithm, based on spline fits to determine curvature, allowed the droplet to 
oscillate many times and still maintain a constant period. The numerical tests on 
the internal capillary waves indicate that the surface tension algorithm produced a 
convergence rate which is linear in the mesh size, whereas the basic hydrodynamic 
algorithms are quadratic in the mesh size for ideal meshes. The droplet oscillation 
test problem, however, indicated some difficulties with the spline tits for curvature 
when the interface becomes highly distorted. 

Previous numerical calculations of oscillating spherical droplets with surface 
tension and viscosity using a marker-and-cell method showed only one oscillation 
of a water droplet in air [20], and thus did not give any information about the 
subsequent behavior of the mode amplitudes. These calculations used 2.5 times the 
resolution of our most resolved calculations. Their calculated period differed from 
the theoretical period by 6% compared to our 12% for a similar initial defor- 
mation. Their viscous calculations failed to damp as quickly as required by theory 
which may indicate that they suffer from a similar problem of approximating 
curvatures. 

We presented calculations showing how a kerosene droplet deforms and sheds 
vortices in the wake of a shear flow. Calculations of fluid flow in and around fuel 
droplets are important in the study of spray combustors. The flow patterns 
influence droplet breakup, evaporation, and burning rates. 
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